On Hierarchical Segmentation of High Resolution PolSAR Data

نویسندگان

  • Felix Totir
  • Lionel Bombrun
  • Gabriel Vasile
  • Michel Gay
  • Stefan Toma
چکیده

Segmentation of SAR (Synthetic Aperture Radar) and PolSAR (Polarimetric SAR) images is a challenging task, both because such images are strongly textured and because of the relatively complicated stochastic model that is assumed. Such stochastic models may vary from classical Gaussian to the more advanced SIRVs. Since contour approaches are highly unreliable for textured images, multi-resolution techniques, among which hierarchical segmentation accounts, gained importance in PolSAR segmentation. However, finding the optimal number of segments, when the hierarchical algorithm should be stopped, remain a subjective task. This paper1 reports some results concerning this latter issue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Feature Segmentation for High-Resolution Polarimetric SAR Data Based on Fractal Net Evolution Approach

Segmentation techniques play an important role in understanding high-resolution polarimetric synthetic aperture radar (PolSAR) images. PolSAR image segmentation is widely used as a preprocessing step for subsequent classification, scene interpretation and extraction of surface parameters. However, speckle noise and rich spatial features of heterogeneous regions lead to blurred boundaries of hig...

متن کامل

Hierarchical Classification of Polarimetric Sar Image Based on Statistical Region Merging

Segmentation and classification of polarimetric SAR (PolSAR) imagery are very important for interpretation of PolSAR data. This paper presents a new object-oriented classification method which is based on Statistical Region Merging (SRM) segmentation algorithm and a two-level hierarchical clustering technique. The proposed method takes full advantage of the polarimetric information contained in...

متن کامل

A Hierarchical Fully Convolutional Network Integrated with Sparse and Low-Rank Subspace Representations for PolSAR Imagery Classification

Inspired by enormous success of fully convolutional network (FCN) in semantic segmentation, as well as the similarity between semantic segmentation and pixel-by-pixel polarimetric synthetic aperture radar (PolSAR) image classification, exploring how to effectively combine the unique polarimetric properties with FCN is a promising attempt at PolSAR image classification. Moreover, recent research...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Segmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)

The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information.  There are different types of segmentation methods among which using  superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009